Critical Percolation on Any Nonamenable Group has no Infinite Clusters

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Percolation on Any Nonamenable Group Has No Innnite Clusters

We show that independent percolation on any Cayley graph of a nonamenable group has no innnite components at the critical parameter. This result was obtained in Benjamini, Lyons, Peres, and Schramm (1997) as a corollary of a general study of group-invariant percolation. The goal here is to present a simpler self-contained proof that easily extends to quasi-transitive graphs with a unimodular au...

متن کامل

Uniqueness of Percolation on Nonamenable Cayley Graphs

For every nonamenable group, a nite system of generators is constructed such that the Bernoulli bond percolation on the corresponding Cayley graph exhibits the double phase transition phenomenon, i.e., the nonuniqueness phase is nonempty.

متن کامل

Energy and Cutsets in Infinite Percolation Clusters

Grimmett, Kesten and Zhang (1993) showed that for d ≥ 3, simple random walk on the infinite cluster C∞(Z, p) of supercritical percolation on Zd is a.s. transient. Their result is equivalent to the existence of a nonzero flow f on the infinite cluster such that the 2–energy ∑ e f(e) 2 is finite. Here we sharpen this result, and show that if d ≥ 3 and p > pc(Z), then C∞(Z, p) supports a nonzero f...

متن کامل

Percolation of Finite Clusters and Infinite Surfaces

Two related issues are explored for bond percolation on Z (with d ≥ 3) and its dual plaquette process. Firstly, for what values of the parameter p does the complement of the infinite open cluster possess an infinite component? The corresponding critical point pfin satisfies pfin ≥ pc, and strict inequality is proved when either d is sufficiently large, or d ≥ 7 and the model is sufficiently spr...

متن کامل

Group-invariant Percolation on Graphs

Let G be a closed group of automorphisms of a graph X. We relate geometric properties of G and X, such as amenability and unimodularity, to properties of G-invariant percolation processes on X, such as the number of infinite components, the expected degree, and the topology of the components. Our fundamental tool is a new masstransport technique that has been occasionally used elsewhere and is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1999

ISSN: 0091-1798

DOI: 10.1214/aop/1022677450